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Processes

• What are they?  How do we represent 
them?

• Scheduling

• Something smaller than a process?  
Threads

• Synchronizing and Communicating

• Classic IPC problems

Processes
The Process Model

a) Multiprogramming of four processes
b) Conceptual model of 4 independent, sequential processes
c) Only one process active at any instant

on each processor.

From Tanenbaum’s Modern Operating System



2

Process Life Cyle

• Processes are “created”
• They run for a while
• They wait
• They run for a while…
• They die

Process States

From Tanenbaum’s Modern Operating System
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NT States

Picture from Inside 
Windows 2000

So what’s a Process?

• What from the OS point of view, is a 
process?

• A struct.  Sitting on a batch of queues.
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Implementation of Processes

Fields of a process table entry
From Tanenbaum’s Modern Operating System

Process Creation

Principal events that cause process creation
A. System start-up
B. Started from a GUI
C. Started from a command line
D. Started by another process
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Process Termination

Conditions which terminate processes
1. Normal exit (voluntary)
2. Error exit (voluntary)
3. Fatal error (involuntary)
4. Killed by another process (involuntary)

From Tanenbaum’s Modern Operating System

Process Hierarchies

• A Process can creates one (or more) 
child process.

• Each child can create its own children.
• Forms a hierarchy through ancestry
• Parents have control of their children
• NT processes can give away their 

children. 
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Switching from Running 
one Process to another
• Known as a “Context Switch”
• Requires

– Saving and loading registers
– Saving and loading memory maps
– Updating Ready List
– Flushing and reloading the memory caches
– Etc.

Handling Interrupts
Who does what?
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Need for Multiprogrammng

• How many processes does the computer need 
in order to stay “busy”?

Threads 
Overview

• Usage
• Model
• Implementation
• Conversions
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Thread Usage

• Makes it easier to 
write programs that 
have to be ready to 
do more than one 
thing at a time using 
the same data.

Thread Model

• A process consists of 
– Open files
– Memory management
– Code
– Global data

– Call Stack (includes local data)
– Hardware Context:

• Instruction pointer, stack pointer, general registers
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Thread Model
(continued)
• Each thread has its own

– Stack (includes local variables)
– Program counter
– General registers (copies)

• A process can have many threads

Thread Implementations
User level thread package
• Implemented as a library in user mode 

– Includes code for creating, destroying, switching…

• Often faster for thread creation, destruction and 
switching

• Doesn’t require modification of the OS
• If one thread in a process blocks then the whole 

process blocks.
• Can only use one processor.
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Thread Implementations
In the Kernel

• An application can have one thread 
blocked and still have another thread 
running.

• The threads can be running on different 
processors allowing for true parallelism.

Thread Implementations

User Mode Library In the kernel

From Tanenbaum’s Modern Operating System
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Hybrid Implementation

Converting Single-threaded to multi-
threaded (!!!)
• Not for faint of heart
• Not all libraries are “thread-safe”.
• There may be “global” variables than need 

to be “local” to a thread.
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Scheduling Overview
• Scheduling issues

– What to optimize.  Price of a context switch.
• Preemptive vs. non-preemptive
• Three-level scheduling

– Short-term / cpu scheduler
– medium-term / memory scheduler
– long-term / admission scheduler

• Batch vs. Interactive
• General Algorithms

– FCFS
– SJF 
– SRTN
– Round Robin
– Priority
– Multiple Queue
– Guaranteed scheduling
– Lottery scheduling
– Fair share

• Examples: CTSS, NT, Unix and Linux

CPU Burst

• Processes with long cpu bursts are called compute-bound
• Processes that do a lot of I/O are called I/O-bound
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Who’s in Charge?

• Who gets to decide when it is time to schedule 
the next process to run?

• If the OS allows the currently running process to 
get to a good “stopping spot”, the scheduler is  
non-preemptive.

• If, instead, the OS can switch processes even 
while a process is in the middle of its cpu-burst, 
then the scheduler is preemptive

Scheduling Algorithm Goals

From Tanenbaum’s Modern Operating System
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First-Come, First-Served 
(FCFS) 

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

• Non-preemptive

• Average waiting time = (0 + 5 + 7 + 7) / 4 = 4.75
• Average turnaround time = ( 7 + 9 + 8 + 11 ) / 4 = 8.75

P1 P3P2 P4

7 160 11 12

From Silberchatz’ Operating System Concepts

Shortest Job First 
(SJF)

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

• Non-preemptive

• Average waiting time = ( 0 + 6 + 3 + 7 ) / 4 = 4
• Average turnaround time = ( 7 + 10 + 4 + 11 ) / 4 = 8

P1 P3 P2

73 160

P4

8 12

Adapted from Silberchatz’ Operating System Concepts
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Shortest Remaining Time Next 
(SRTN)

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

• Preemptive

• Average waiting time = ( 9 + 1 + 0 + 2 ) / 4 = 3
• Average turnaround time = ( 16 + 5 + 1 + 6 ) / 4 = 7

P1 P3P2

42 110

P4

5 7

P2 P1

16

From Silberchatz’ Operating System Concepts

Using “Aging” to Estimate Length of 
Next CPU Burst

• Useful for both batch or interactive processes.
• Provides an estimate of the next length.
• Can be done by using the length of previous CPU 

bursts, using exponential averaging.
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Prediction of the Length of the Next 
CPU Burst

From Silberchatz’ Operating System Concepts

Round Robin
• Each process gets a small unit of CPU time (time 

quantum), usually 10-100 milliseconds.  After this time 
has elapsed, the process is preempted and added to the 
end of the ready queue.

• If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU 
time in chunks of at most q time units at once.  No 
process waits more than (n-1)q time units.

• Performance
– q large ⇒ FIFO
– q small ⇒ q must be large with respect to context switch, 

otherwise overhead is too high.

From Silberchatz’ Operating System Concepts
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Example of RR 
with Time Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

• The Gantt chart is: 

• Typically, higher average turnaround than SJF, but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121134 154162

From Silberchatz’ Operating System Concepts

Priority Scheduling

• Each process is explicitly assigned a 
priority.  

• Each queue may have its own scheduling 
strategy.

• No process in a lower priority queue will 
run so long as there is a ready process in 
a higher priority queue.
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Multi-Queue with Feedback 

• Different queues, possibly with different 
scheduling algorithms.

• Could use a RR queue for “foreground”
processes and a FCFS queue for “background”.

• Example:  CTSS had a multilevel queue
– Each lower priority had a quantum twice as long as 

the one above.
– You moved down in priority if you used up your 

quantum.
– Receiving a carriage-return at the process’s keyboard 

moved the process to the highest priority.

Guaranteed Scheduling

• What if we want to guarantee that a 
process get x% of the CPU?  How do we 
write the scheduler?

• Scheduling algorithm would compute the 
ratio of 
a) The fraction of CPU time a process has used since the process 

began

b) The fraction of CPU time it is supposed to have.

• The process with the lowest ratio would 
run next.
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Lottery

• Issue lottery tickets.
• The more lottery tickets you have, the 

better your chance of “winning”.
• Processes can give (or lend) their tickets 

to their children or to other processes.

Fair Share

• If there are 2 users on the machine, how 
much of the CPU time should each get?

• In Unix or NT it would depend on who 
has more processes (or threads).

• Dividing the time based on the number of 
users instead, would be called “a fair 
share”
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NT Scheduling

From Tanenbaum’s Modern Operating System

• Priority Inversion: 
When a high priority process is prevented from making progress 
due to a lower priority process.

• High Priority process waits on a resource held by a Low Priority
process.  [By itself this does not constitute a problem.]

• But the low priority process can’t release the resource because 
a Medium Priority process is running.

• Here we have one process (medium priority) blocking a higher 
priority process.

• How do unix and NT handle this?

Priority Inversion
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UNIX Scheduler
• Fixed quantum size.

• The running process’s cpu_usage
count is incremented when the clock 
ticks

• Once per second the cpu_usage is 
“aged” and priorities are recomputed

• Priority ≈ base + cpu_usage + nice

• Processes waiting inside the kernel for 
i/o to complete have negative (high) 
priorities, but these drop to “normal”
when they return to user space. 

From Tanenbaum’s Modern Operating System

Linux 2.4 Scheduler
• Processes are assigned CPU time once each epoch.  A 

new epoch begins when no ready-to-run job has any cpu 
time left.

• A process can carry over half its unused CPU time from 
the last epoch.

• Priority (known as goodness) is recalculated each time 
the scheduler runs.

• Goodness is largely determined by the unused cpu time.
• Preference is given to a process if it uses the same 

memory space as the last process (so the memory 
management cache doesn’t need to be cleared).

• Preference is given in a multiprocessor machine to a 
process if it last ran on the current processor.  This 
improves cache hits.
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Linux 2.6 Scheduler
• 140 levels.  

– First 100 are “real time”.  Last 40 for “user”
– Allows a 5-word bit map to identify occupied levels.

• Active vs. expired arrays.  Active array of levels holds processes to 
be scheduled

• When user process uses up its quantum it moves to the expired 
array.
– Priority is then recalculated based on “interactivity”: 
– ratio of how much it executed compared to how much it slept.  
– adjusts priority ±5.
– Quantum is based on priority.  Better priority has longer quantum.

• (Note: different sources quote different ranges… have to check real source)
• Queues are swapped when no active user process left. 

– Like the 2.4 scheduler this allows low priority processes to get a chance.
• Separate structures for each cpu, but migration is possible.

Issues for Multi-level 
Round Robin Queues
• Quantum

– Fixed size or variable
– When / how is it “used up”

• Priority
– How is it determined
– When is it modified
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IPC Overview
• IPC (InterProcess Communication) 

– Allows processes to exchange data and synchronize execution
• Issues

– Race Condition
– Critical Region / Mutual Exclusion

• Guaranteeing Mutual Exclusion with
– Pure software solutions
– Hardware assistance
– Common abtractions

• Semaphore
• Monitor

• Other forms of communication.

Race Condition

//Process A
//x = x + 1;
MOV EAX, x // line 1
INC EAX    // line 2
MOV x, EAX // line 3

Scenario 1
Proc A – line 1
Proc B – line 1,2,3
Proc A – line 2,3

Result:  1

// Process B
//x = x - 1;
MOV EAX, x // line 1
DEC EAX    // line 2
MOV x, EAX // line 3

Scenario 2
Proc A – line 1
Proc B – line 1
Proc A – line 2,3
Proc B – line 2,3

Result:  -1

x = 0;  // Shared memory
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Critical Region

• Any section of code where shared memory is 
accessed or modified

• Conditions for a good solution for avoiding 
races:
– No two processes may be in their corresponding 

critical regions simultaneously (mutual exclusion)
– No assumptions to be made about speed or number 

of processes
– No process running outside a critical region may 

block another process from entering
– No process should have to wait forever.

Easy Solution:
Disable Interupts
• Eeek!
• Obviously this can only be done in kernel 

mode.
• And even in kernel mode it’s not great.
• Especially inefficient and difficult with 

multiple processors.
• But sometimes it may be the right (or 

simplest) answer.
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Software Solution:
Using a “lock”
int lock = 0;  // lock is a shared variable

// Call this BEFORE 
// beginning the 
// critical region

void enterRegion() 
{
// bit spin waiting 
// for lock
while (lock == 1) 
yield(); 

lock = 1;
}

// Call this AFTER 
// finishing the 
// critical region

void leaveRegion() 
{

lock = 0;
}

Software Solution:
Taking Turns

// Call this before 
// beginning the 
// critical region

void enterRegion(int 
proc) 

{
// bit spin waiting 
// for turn
while (turn != proc) 
yield();

}

// Call this after 
// finishing the 
// critical region

void leaveRegion(int 
proc) 

{
turn = 1 - proc;

}
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Software Solution:
Taking Turns

Process 0

while (TRUE) {
enterRegion(0);
criticalRegion();
leaveRegion(0);
nonCriticalRegion();

}

Process 1

while (TRUE) {
enterRegion(1);
criticalRegion();
leaveRegion(1);
nonCriticalRegion();

}

Software Solution:
Peterson’s Solution

int turn; // Will be set before first use
bool interested[2]; // Initialized to false

void enter_region  (int process) {
int other = 1 - process;
interested[process] = true;
turn = process;
while (turn == process && interested[other] == true)

;    // NOTE: Loop does nothing but check state 
}

void exit_region (int process) {
interested[process] = false;

}
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Hardware Solution:
Disable Interupts
• Eeek!
• Obviously this can only be done in kernel 

mode.
• And even in kernel mode it’s not great.
• Especially inefficient and difficult with 

multiple processors.
• But sometimes it may be the right (or 

simplest) answer.

Hardware Solution:
Atomic Machine Instruction
• Atomic machine instruction

– Instruction that cannot be interrupted

• Test and Set Lock (TSL)
– Test a memory location and set it.
– Motorolla 680x0
– Usage:  TSL register, memory
– Enter_region:

TSL reg, LOCK// Copy LOCK to the register
// and set LOCK = 1

CMP reg, 0 // Compare the register with zero.
BNE Enter_region // If it wasn’t zero, try again.

– Exit_region:
MOVE LOCK, 0

• Swap
– Exchanges register with memory.  
– Intel x86
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Busy Wait and Priority Inversion

• Busy wait can lead to priority inversion.

• If a high-priority process busy-waits on a 
resource held by a low-priority process then the 
low-priority process will never get to execute.

• Effectively, the low priority process is blocking 
the busy-waiting high priority process from ever 
proceeding.

• Moral: busy-waiting must be used with caution.

Producer / Consumer Problem
• A problem involving two kinds of processes, producers 

and consumers, and a shared fixed-sized queue.
• Producers produce things and place them in the queue.
• Consumers take things out of the queue and consume 

them.
• What should happen if 

– the queue is full when the producer wants to put something in?
– The queue is empty when the consumer goes to take something 

out?
• How do we block the producer / consumer until the right 

time and then make sure they get back to work?
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Sleep and Wakeup

Producer-consumer problem with fatal race condition
From Tanenbaum’s Modern Operating System

Semaphores
• A very widely used primitive for 

synchronization.

• Think of it as an abstract data type with just 
three operations:

– Constructor / initializer
– P(). Attempts to “lock” the semaphore.
– V(). Frees the semaphore.

• NEVER access the “value” of a semaphore 
directly.  Only access it through the provided 
operations.

• P() and V() are atomic.

• Tannenbaum uses “down()” and “up()”
instead.

• Semaphores come in two flavors:
– Binary.  Also called Mutex. 
– Counting.  Allows more than one process to 

“own the lock” simultaneously.
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Mutex roughly
implemented using TSL

From Tanenbaum’s Modern Operating System

Note that in a real implementation, failing to get the lock on a mutex would put the 
process on a wait queue.  Tanenbaum likes this version because it can be done in user 
mode.

Counting Semaphores
Can be used to allocating N things.  Declare a semaphore S:

int S = N;

Simple conceptual implementation of the operations:

P(S): {
--S;
if  (S < 0)

sleep();
}

V(S): {
++S;
wake(); // Wake one of the waiting processes

}

These functions must be “atomic”.
And never access the value of the semaphore directly.
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Semaphores can be tricky…

Process A
P(S);
P(Q);
M

V(Q);
V(S);

Process B
P(Q);
P(S);
M

V(S);
V(Q)

•Above is one source of error, two processes requesting to 
lock a pair of semaphores, but in reverse order.
•Or suppose a programmer fails to use the V operation…
•Or even the P operation!

Using Semaphores

The producer-consumer problem using semaphores
From Tanenbaum’s Modern Operating System
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Monitor
• High-level synchronization 

primitive.  Must be provided by 
the language.

• Collection of data and 
procedures collected together.  
(like an OOP class)

• Only one procedure in a 
monitor can be active at a 
time.

• A process that is running in a 
monitor procedure can block 
itself by waiting on a condition 
variable.

Monitors

From Tanenbaum’s Modern Operating System
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Condition Variables
• To allow a process to wait within the monitor, a condition

variable must be declared.
condition x;

• Condition variables can only be used with the operations wait
and signal.
– The operation

wait(x);
means that the process invoking this operation is suspended until 
another process invokes

signal(x);
– The signal operation resumes exactly one suspended process.  If 

no process is suspended, then the signal operation has no 
effect.

• Note that condition variables are also commonly provided with 
Mutex libraries.

Schematic View of a Monitor
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Monitor With Condition Variables

Monitors

• Outline of producer-consumer problem with monitors
– only one monitor procedure active at one time
– buffer has N slots From Tanenbaum’s Modern Operating System
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Monitors

Solution to producer-consumer problem in Java
From Tanenbaum’s Modern Operating System

Monitors

Solution to producer-consumer problem in Java (part 2)

From Tanenbaum’s Modern Operating System
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Message Passing
• Widely used IPC technique is for the OS to support 

sending messages.
– Less “fragile” than semaphores.
– Doesn’t require language support (unlike monitors)

• Possible Design Issues:
– Where do we send

• to a process or through a “mailbox”?
– Efficiency

• How many times will the message be sent?
• Maximum size of messages?
• Maximum size of message queue?

– Portability
• Does the interface work with different OS’s?
• Does it work with both single processor and distributed systems?

Using Message Passing

The producer-consumer problem with N messages
From Tanenbaum’s Modern Operating System
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Barrier

• Here we have several processes that need to synchronize together.
• High level abstractions, such as a barrier, are often convenient to solve 

certain types of problems.

Common IPC Mechanisms
in Unix and NT
• Semaphores / Mutexes
• Spin Locks
• Signals (unix)
• Pipes.  Processes must be related.
• FIFO (aka named pipes). Can be shared by unrelated processes.
• Shared memory.
• Shared Files.
• Message Queues.
• Mail slots (NT) Don’t guarantee delivery.  Can send to multiple recipients.
• Remote Procedure Call.   The ability to invoke a procedure in another 

process.
• Sockets (intended for network communications)
• MPI (Message Passing Interface)
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Spin Lock
• Suppose when we are trying to get the lock on a resource, we bit spin with 

the TSL.  What’s the down side?
– We are using up cpu cycles.
– On a single core/cpu possibly no one will get to run and free up resource.

• A spin lock is a mechanism where attempting to lock involves 
bit-spinning till the lock is gained.

– They may be used when 
• you have more than one core/cpu
• and the lock will only be needed for a very short time.
• and the one who has the lock will not get blocked

– Some implementations will switch to a more standard semaphore lock
• If the process/thread that has the lock is currently running
• If bit-spinning turns out to be taking too long

• An optimization to avoid bus traffic is to use a regular read during the bit 
spinning and only use the TSL when we believe the lock is free.

Classic IPC Problems

• Producer/Consumer (aka Bounded Buffer)
• Dining Philosophers
• Readers / Writers
• Sleeping Barber
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Dining Philosophers

• Philosophers eat/think
• Eating needs 2 forks
• Pick one fork at a time 
• How to prevent 

deadlock

From Tanenbaum’s Modern Operating System

Dining Philosophers

A non-solution
From Tanenbaum’s Modern Operating System
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Dining Philosophers

From Tanenbaum’s Modern Operating System

Dining Philosophers

From Tanenbaum’s Modern Operating System
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The Readers and Writers Problem

From Tanenbaum’s Modern Operating System

void beforeReading() {
P(protectCount);
if (++rc == 1) 

P(protectDB);
V(protectCount);

}

void afterReading() {
P(protectCount);
if (--rc == 0) 

V(protectDB);
V(protectCount);

}

typedef int semaphore;
semaphore protectCount = 1;  // mutex
semaphore protectDB = 1;     // mutex
int rc = 0

void beforeWriting() {
P(protectDB);

}

void afterWriting() {
V(protectDB);

}


